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SBIR topic: Software Testing and Vulnerability Analysis 

 Problem

 Effective and systematic measurement of the risks posed by software 

vulnerabilities

 Challenge

 One of the key challenges is that analysis solution consists of multiple 

tools, information sources and services that are currently fragmented 

lacking intuitive and efficient integration due to

 Inconsistency in the nomenclature of reported vulnerabilities caused by 

ambiguity of vulnerability definitions (inconsistency in interpretation of CWE 

instances)

 Lack of agreement on what are the parts of vulnerability to report – what 
constitutes vulnerability report

 Lack of interoperability that is based on common definition of system artifacts 
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Integration issues
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Traditional vulnerability analysis 

and testing tools are built as “silos”

making it difficult to correlate 

findings

The problem

Source or machine code

... incompatible vulnerability findings

same system ...
Source: NSA report, 2009

NSA reported 84% non overlapping results
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Technological Achievements

 Creating next-generation composite vulnerability analysis tool 
on top of existing off-the-shelf vulnerability detection tools

 Improving the breadth and accuracy of vulnerability analysis

 Improving the rigor of assessments by bringing vulnerability 
detection into architecture context

 Normalizing vulnerability reporting protocols

 Leveraging OMG Software Assurance Ecosystem standards and 
formalizations of CWE content

Delivering open source product: analyzer and run time framework for 
integrating findings of vulnerability detection tools including integration of 
5 existing open source vulnerability analyzers. 

In addition proprietary architecture analysis tool will be integrated to show 
greater value when viewing CWEs within the architecture content. 
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Weakness Logical Model

Code Path

Statement

1..*

Control Flow

Control Relation

fromto

has

CF

Example weakness 

formalization 

Metamodel (fragment)

TF
1..*

satisfies

satisfies

1..*

0..*

Condition
End Statement

Start Statement

Weakness

Structural Rules

Value Rules

0..*

0..*

involves

1..*

0..*

Data Flow

Data Element
0..*

Value Range

Data Relation determines

has

resolves to

from

to

uses
Resource

Property

determines



™
(9) © 2010, KDM Analytics

 Capability to integrate multiple vulnerability detection tools as “data 
feeds” into the repository

 Based on a common protocol for exchanging vulnerability findings

 Achieved through normalizing vocabularies across multiple tools

 Capability to collate findings from several tools

 Capability to put vulnerability findings into the context of other facts 
about the system (such as metrics, architecture, design patterns, 
etc.)

 Based on existing standard protocol for exchanging system facts, the 

OMG Knowledge Discovery Metamodel (KDM), 

 now ISO/IEC 19506

 As the result: single integrated repository of high-fidelity facts about 
a software system

The Tools’ Output Integration Framework 
Fact-oriented integration
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Integration points

 Nomenclature of the vulnerability (CWE)

 Location of the vulnerability
 basic: file, linenumber, position

 advanced: system facts 

 procedure, method, statement, call, read, etc

 scenario

 Pattern 
 sink

 source
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public class HTTPSession {
EmployeeServlet control;
Request request;
...
control = new EmployeeServlet();
...

void processServletRequest() {...
HTTPServletRequest servletRequest=

new HttplServletRequestImpl( request );
...
control.doPost( servletRequest, 

servletResponse );
...
}

}

public class EmployeeServlet {
...
void doPost( HttpServletRequest request,
HttpServletResponse response) { 

...
String firstName=

request.getParameter(“first_name”);
...
}

...
}
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KDM code facts
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KDM abstraction
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KDM Top model
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KDM hierarchies 
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Knowledge Discovery Metamodel: 

defines the common 
vocabulary for 
representing codeextends the vocabulary by providing modeling elements to 

represent operational environment of the code: it 
represents resources, control and data flows, determined 
by the platform, and not explicit in the code

UI package extends the 
common vocabulary 
with resources, 
control and data 
flow related to User 
Interfaces

Event package extends the common 
vocabulary to represent state-
based behavior

Data package extends the common 
vocabulary to represent persistent 
data

Extends the common 
vocabulary by 
providing modeling 
elements to 
represent 
architecture-specific 
and domain-specific 
abstractions
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Going forward

 Integration of existing vulnerability detection tools and cross-
correlation of their findings with architectural analysis is 
important for software assurance

 Commercialization through open source

 Integrate selected open source vulnerability detection tools

 Open source KDM extraction tools

 TOI Framework protocol is easy to adopt by tool vendors

 Phase II will involve a practical case study
 Assessment of DNS Bind and Wireshark

 Deliverables:

 a ready-to-use open source composite vulnerability analyzer 

integrating 5 existing open source vulnerability detection tools

 integrating proprietary architecture analysis tool

 a protocol for exchanging vulnerability findings

 blueprints for adaptors of the protocol

 practical usability and accuracy data based on the case study
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Potential Benefits

 Powerful open source vulnerability detection platform

 Reference implementation for standard-based adaptors

 Blue print how to integrate additional analyzers

 Further CWE normalization of vulnerability reports based on 
the Software Fault Patterns; adoption of SFPs

 Adoption of standard-based reporting of vulnerabilities

 Utilization of open source development to advance the SwA
space


